
Robot Learning
Basics of computer vision for robotics

Representation learning



Logistics that I forgot to tell last time

• Project has multiple components.
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October 8th 

November 5rd 

December 1st 

December 3rd 

December 10th 



Last time…

1. A perceptron
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Last time…

2. A single layer neural network
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Last time…

3. A deep neural network
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Last time…
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Last time…
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𝑔 should not be a linear function.

Analysis Of Optimizing Neural Networks And Artificial Intelligent 
Models For Guidance, Control, And Navigation Systems
Rahul Jayawardana, Thusitha Sameera Bandaranayake



Robot learning
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Autonomous Mobile Robots
Siegwart et al.

We are here today



Neural networks for images
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Easy “solution”: flatten the image and make it a vector.



Neural networks for images
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Neural networks for images
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Neural networks for images
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Spatial locality → weight sharing

Regardless of it is location in the image,          is a stop sign.



Convolution
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Convolution
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Why is convolution important?

Many major technological developments in the past 50 years 
somehow relates to convolution.

• Used in: image processing, machine learning, telecommunications, 
audio processing, medical imaging, radar/sonar systems, seismology, 
quantum computing, optics, data compression, 3D graphics…
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Why is convolution important?

Many major technological developments in the past 50 years 
somehow relates to convolution.

• Used in: image processing, machine learning, telecommunications, 
audio processing, medical imaging, radar/sonar systems, seismology, 
quantum computing, optics, data compression, 3D graphics…

Became especially popular after James Cooley and John Tukey 
developed Fast Fourier Transform (FFT) in 1965.
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Reduces the computational complexity of
convolution from 𝑂 𝑁𝑀  to 𝑂 𝑁 log 𝑁



What’s more?

FFT is “the most important numerical algorithm of our lifetime.”

Top 10 algorithms of the 20th century, according to IEEE’s 
Computing in Science & Engineering magazine:
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Gilbert Strang, 1994

Guest editors introduction to the top 10 algorithms
Dongarra and Sullivan, Computing in Science & Engineering, 2000 



More on convolution and FFT

• EE 301L: Linear Systems

• EE 483: Introduction to Digital Signal Processing

• EE 434Lx: Digital Signal Processing Design Laboratory

• BME 413: Bioengineering Signals and Systems
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Convolution
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Convolution
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5 0 -2 1 0 3 2 -1 -1 0 1… …
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This carries information about
only these three entries.



Convolution in 2D
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Convolution in 2D

CSCI 699: Robot Learning - Lecture 2 22



Convolutional neural networks (CNN)

• Traditionally consists of:
• Convolutional layers

• Nonlinearity layers

• Pooling layers

• Fully-connected layers 
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LeNet
(1998)

Gradient-based learning applied to document recognition
LeCun et al., Proceedings of the IEEE, 1998
Slide from: Marco Pavone (Stanford)



Convolutional layer
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Convolutional layer

Let’s say we have an image with size: (16, 16, 3) and 8 kernels 
where each kernel is (5, 5).
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Convolutional layer

Let’s say we have an image with size: (16, 16, 3) and 8 kernels 
where each kernel is (5, 5).
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Padding and stride
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Convolutional neural networks (CNN)

• Traditionally consists of:
• Convolutional layers

• Nonlinearity layers

• Pooling layers

• Fully-connected layers 
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LeNet
(1998)

Gradient-based learning applied to document recognition
LeCun et al., Proceedings of the IEEE, 1998
Slide from: Marco Pavone (Stanford)



Pooling layer

CSCI 699: Robot Learning - Lecture 2 29
Application of Transfer Learning Using Convolutional Neural 
Network Method for Early Detection of Terry’s Nail
Yani et al., Journal of Physics Conference Series 2019.



Convolutional neural networks (CNN)

• Traditionally consists of:
• Convolutional layers

• Nonlinearity layers

• Pooling layers

• Fully-connected layers 
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LeNet
(1998)

Gradient-based learning applied to document recognition
LeCun et al., Proceedings of the IEEE
Slide from: Marco Pavone (Stanford)



From lecture 1

A fully-connected layer
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From lecture 1
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Different types of nonlinearity layers:

Analysis Of Optimizing Neural Networks And Artificial Intelligent 
Models For Guidance, Control, And Navigation Systems
Rahul Jayawardana, Thusitha Sameera Bandaranayake



Convolutional neural networks (CNN)

• Traditionally consists of:
• Convolutional layers

• Nonlinearity layers

• Pooling layers

• Fully-connected layers 
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LeNet
(1998)

Gradient-based learning applied to document recognition
LeCun et al., Proceedings of the IEEE
Slide from: Marco Pavone (Stanford)



Classification with CNNs
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Classification via hand-crafted features

Uses image statistics and keypoints as features.

Trains a classifier over those features.
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End-to-end training
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Visualizing CNN features
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Online CNN demo
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https://adamharley.com/nn_vis/ 

https://adamharley.com/nn_vis/


Comparison
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Alex Krizhevsky,
 Ilya Sutskever,

Geoffrey Hinton

From: ImageNet Large Scale Visual Recognition Challenge 2012 
(ILSVRC2012)



Comparison
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Our model is a large, deep convolutional neural network trained on raw RGB pixel values. The neural 
network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some 
of which are followed by max-pooling layers, and three globally-connected layers with a final 1000-way softmax. It 
was trained on two NVIDIA GPUs for about a week. To make training faster, we used non-saturating neurons and 
a very efficient GPU implementation of convolutional nets. To reduce overfitting in the globally-connected layers 
we employed hidden-unit "dropout", a recently-developed regularization method that proved to be very effective. 

The description of SuperVision:

From: ImageNet Large Scale Visual Recognition Challenge 2012 
(ILSVRC2012)



Deeper and deeper
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Transformer

CSCI 699: Robot Learning - Lecture 2 42Attention is all you need
Vaswani et al., NeurIPS 2017



Vision transformers (ViT)

CSCI 699: Robot Learning - Lecture 2 43
An Image is Worth 16x16 Words: Transformers for Image 
Recognition at Scale
Dosovitskiy et al., ICLR 2021



Robotics applications of vision
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Robotics applications of vision
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Classification + Localization

CSCI 699: Robot Learning - Lecture 2 46

Do not just output the image class.
Output the class and 4 numbers, one for each corner of the bounding box.

From: Stanford CS231N



Classification + Localization

Or just use a classifier multiple times.
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OverFeat: Integrated Recognition, Localization and
Detection using Convolutional Networks
Sermanet et al., ICLR 2014



Robotics applications of vision

CSCI 699: Robot Learning - Lecture 2 48From: Richa Bhatia (Analytics India Magazine)



Robotics applications of vision
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Robotics applications of vision
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Object detection



Metric for object detection
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Object detection with YOLO

Divide image into 𝑆 × 𝑆 grid. For each cell, predict:

• 𝐵 boxes with 4 coordinates and 1 confidence score each, and

• 𝐶 class scores.

This gives a tensor of 𝑆 × 𝑆 × (5𝐵 + 𝐶).

Apply non-maximum suppression to finalize.
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You Only Look Once: Unified, Real-Time Object Detection
Redmon et al., CVPR 2016



Object detection with YOLO
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You Only Look Once: Unified, Real-Time Object Detection
Redmon et al., CVPR 2016



Object detection in robotics

Speed is crucial – we need to detect, track, and classify many 
objects with high frequency.
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Object detection in robotics

Speed is crucial – we need to detect, track, and classify many 
objects with high frequency.
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Real-Time Detection, Tracking and Classification of Multiple 
Moving Objects in UAV Videos
Baykara et al., ICTAI 2017



How AI Helps Autonomous Vehicles See Outside the Box
NVIDIA
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Today

• Basics of computer vision for robotics

• Representation learning
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Representation learning

A good representation:

• contains the aspects of the raw data that are important for the 
downstream task

• is usually compact

• is ideally (but rarely) interpretable
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Examples of representations
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RGB HSV

From: Michael Horvath



Examples of representations
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Examples of representations
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Examples of representations

CSCI 699: Robot Learning - Lecture 2 63Robot: COOL arm-5000 (ASIMOV Robotics)
Images from: Packt Publishing
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How do we learn representations?

So many methods that it could be a course on its own.
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How do we learn representations?

So many methods that it could be a course on its own.

We will cover only two:

• Autoencoders

• Variational autoencoders
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Principal component analysis (PCA)

PCA is a special case of autoencoders.
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Raw data:   𝑋 ∈ ℝ𝑛×𝑑

Top 𝑘 eigenvectors: 𝑉 ∈ ℝ𝑑×𝑘

Representation:  𝑍 = 𝑋𝑉 ∈ ℝ𝑛×𝑘

Reconstruction:  ෠𝑋 = 𝑋𝑉𝑉⊤ ∈ ℝ𝑛×𝑑



Principal component analysis (PCA)

PCA is a special case of autoencoders.
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Raw data:   𝑋 ∈ ℝ𝑛×𝑑

Top 𝑘 eigenvectors: 𝑉 ∈ ℝ𝑑×𝑘

Representation:  𝑍 = 𝑋𝑉 ∈ ℝ𝑛×𝑘

Reconstruction:  ෠𝑋 = 𝑋𝑉𝑉⊤ ∈ ℝ𝑛×𝑑
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This is not typical in
a neural network

Linear!



Principal component analysis (PCA)

PCA is a special case of autoencoders.

1. Add nonlinearity

2. Remove the dependence between layers

3. Possibly add more layers

Now you have a more powerful autoencoder.
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Autoencoders
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A comparative dimensionality reduction study in telecom 
customer segmentation using deep learning and PCA
Alkhayrat et al., Journal of Big Data 2020



Autoencoders

CSCI 699: Robot Learning - Lecture 2 70Reducing the dimensionality of data with neural networks
Hinton and Salakhutdinov, Science 2006



Applications of autoencoders
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• Denoising



Applications of autoencoders
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• Reinforcement learning



Applications of autoencoders
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• Reinforcement learning

ActionRL Agent



Applications of autoencoders
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• Reinforcement learning

Encoder
Pretrained 

Encoder

ViSaRL: Visual Reinforcement Learning Guided by Human Saliency
Liang et al., 2023



Applications of autoencoders
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ViSaRL: Visual Reinforcement Learning Guided by Human Saliency
Liang et al., 2023



Applications of autoencoders
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• Reinforcement learning (ViSaRL)

ViSaRL: Visual Reinforcement Learning Guided by Human Saliency
Liang et al., 2023



ViSaRL results
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ViSaRL: Visual Reinforcement Learning Guided by Human Saliency
Liang et al., 2023



ViSaRL results
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ViSaRL: Visual Reinforcement Learning Guided by Human Saliency
Liang et al., 2023



Applications of autoencoders
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• Clustering

Clustering with Deep Learning: Taxonomy and New Methods
Aljalbout et al., 2018

𝑘-Means Autoencoder + 𝑘-Means



Applications of autoencoders

• Generate new data??
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Autoencoder + 𝑘-Means

Clustering with Deep Learning: Taxonomy and New Methods
Aljalbout et al., 2018



Applications of autoencoders

• Generate new data??

CSCI 699: Robot Learning - Lecture 2 81

Autoencoder + 𝑘-Means



Applications of autoencoders

• Generate new data??
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Autoencoder + 𝑘-Means

Doesn’t work!



Variational autoencoders (VAE)
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Same as autoencoders, but everything is a distribution now.

𝑥 ො𝑥 ∼ 𝑝 𝑥 ∣ 𝑧

𝑧 ∼ 𝑝 𝑧 ∣ 𝑥



Variational autoencoders (VAE)

How does a neural network output a distribution?

We assume a parameterized distribution, and the network 
outputs the parameters.
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Most commonly a Gaussian 
distribution. Then, the network 
outputs the mean vector and 
the covariance matrix.



Variational autoencoders (VAE)
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Same as autoencoders, but everything is a distribution now.

𝑥 ො𝑥 ∼ 𝑝 𝑥 ∣ 𝑧

𝑧 ∼ 𝑝 𝑧 ∣ 𝑥
𝒩 𝑓𝜃 𝑧 , 𝑐𝐼

𝑞𝜙 𝑧 ∣ 𝑥 = 𝒩 𝑔𝜙 𝑥 , ℎ𝜙 𝑥



Variational autoencoders (VAE)
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Just minimize 𝑥 − ො𝑥 2?

No.

𝑥 ො𝑥 ∼ 𝑝 𝑥 ∣ 𝑧

𝑧 ∼ 𝑝 𝑧 ∣ 𝑥
𝒩 𝑓𝜃 𝑧 , 𝑐𝐼

𝑞𝜙 𝑧 ∣ 𝑥 = 𝒩 𝑔𝜙 𝑥 , ℎ𝜙 𝑥



Variational autoencoders (VAE)
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Just minimize 𝑥 − ො𝑥 2?

No.

The network would
learn Gaussians for
𝑧 that are far from
each other.

We need to
regularize.

𝑥 ො𝑥 ∼ 𝑝 𝑥 ∣ 𝑧

𝑧 ∼ 𝑝 𝑧 ∣ 𝑥
𝒩 𝑓𝜃 𝑧 , 𝑐𝐼

𝑞𝜙 𝑧 ∣ 𝑥 = 𝒩 𝑔𝜙 𝑥 , ℎ𝜙 𝑥



Variational autoencoders (VAE)
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𝑥 ො𝑥 ∼ 𝑝 𝑥 ∣ 𝑧

𝑧 ∼ 𝑝 𝑧 ∣ 𝑥
𝒩 𝑓𝜃 𝑧 , 𝑐𝐼

𝑧 𝑥

Graphical model

𝑥 is observed.

We want to maximize
the likelihood of the 
observed data: 𝑝 𝑥 .

But we can’t compute 𝑝 𝑥 .

𝑞𝜙 𝑧 ∣ 𝑥 = 𝒩 𝑔𝜙 𝑥 , ℎ𝜙 𝑥



Variational autoencoders (VAE)

𝑝 𝑥

Distribution of raw data.

MNIST example: 

All samples from 𝑝 𝑥  is a 
drawing of a 0-9 digit. For all 
such drawings 𝑝 𝑥 > 0.

We don’t have this.
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Variational autoencoders (VAE)

𝑝 𝑥

Distribution of raw data.

MNIST example: 

All samples from 𝑝 𝑥  is a 
drawing of a 0-9 digit. For all 
such drawings 𝑝 𝑥 > 0.

We don’t have this.
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𝑝 𝑧

Distribution of the latent code.

We can assume anything.

This is what makes VAEs work!

We will assume 𝒩 0, 𝐼  so that 
the network will not cheat by 
learning Gaussians that are far.



Variational autoencoders (VAE)

Our goal is to maximize 𝑝 𝑥 , or equivalently log 𝑝 𝑥 .

We will use variational inference.
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Variational inference

𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥  ‖ 𝑝(𝑧 ∣ 𝑥) = −∫ 𝑞𝜙 𝑧 𝑥 log
𝑝 𝑧 𝑥

𝑞𝜙 𝑧 𝑥
𝑑𝑧 ≥ 0

−∫ 𝑞𝜙 𝑧 𝑥 log
𝑝𝜃 𝑥 𝑧 𝑝 𝑧

𝑞𝜙 𝑧 𝑥 𝑝 𝑥
𝑑𝑧 ≥ 0

−∫ 𝑞𝜙 𝑧 𝑥 log
𝑝𝜃 𝑥 𝑧 𝑝 𝑧

𝑞𝜙 𝑧 𝑥
− log 𝑝 𝑥 𝑑𝑧 ≥ 0

log 𝑝 𝑥 ∫ 𝑞𝜙 𝑧 𝑥 𝑑𝑧 − ∫ 𝑞𝜙 𝑧 𝑥 log
𝑝𝜃 𝑥 𝑧 𝑝 𝑧

𝑞𝜙 𝑧 𝑥
𝑑𝑧 ≥ 0
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Variational inference

log 𝑝 𝑥 ≥ ∫ 𝑞𝜙 𝑧 𝑥 log
𝑝𝜃 𝑥 𝑧 𝑝 𝑧

𝑞𝜙 𝑧 𝑥
𝑑𝑧

log 𝑝 𝑥 ≥ ∫ 𝑞𝜙 𝑧 𝑥 log 𝑝𝜃 𝑥 𝑧 + log
𝑝 𝑧

𝑞𝜙 𝑧 𝑥
𝑑𝑧

log 𝑝 𝑥 ≥ 𝔼𝑧∼𝑞𝜙 ⋅∣𝑥 log 𝑝𝜃 𝑥 𝑧 + ∫ 𝑞𝜙 𝑧 𝑥 log
𝑝 𝑧

𝑞𝜙 𝑧 𝑥
𝑑𝑧

log 𝑝 𝑥 ≥ 𝔼𝑧∼𝑞𝜙 ⋅∣𝑥 log 𝑝𝜃 𝑥 𝑧 − 𝐷𝐾𝐿 𝑞𝜙 𝑧 ∣ 𝑥  ‖ 𝑝(𝑧)
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Variational inference

log 𝑝 𝑥 ≥ 𝔼𝑧∼𝑞𝜙 ⋅∣𝑥 log 𝑝𝜃 𝑥 𝑧 − 𝐷𝐾𝐿 𝑞𝜙 𝑧 ∣ 𝑥  ‖ 𝑝(𝑧)
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Evidence Lower Bound (ELBO)



Variational inference

log 𝑝 𝑥 ≥ 𝔼𝑧∼𝑞𝜙 ⋅∣𝑥 log 𝑝𝜃 𝑥 𝑧 − 𝐷𝐾𝐿 𝑞𝜙 𝑧 ∣ 𝑥  ‖ 𝑝(𝑧)

Practical version:
log 𝑝 𝑥 ≥ 𝔼𝑧∼𝑞𝜙 ⋅∣𝑥 log 𝑝𝜃 𝑥 𝑧 + log 𝑝 𝑧 − log 𝑞𝜙 𝑧 ∣ 𝑥
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Evidence Lower Bound (ELBO)



Comparison
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Autoencoder, or
VAE without regularization

VAE with regularization

From: Joseph Rocca (Meta)



Variational autoencoders in robotics

CSCI 699: Robot Learning - Lecture 2 97
Learning Latent Actions to Control Assistive Robots
Losey et al., AURO 2022

More on this in a few weeks!



Variational autoencoders in robotics
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Dream to control: learning behaviors by latent imagination
Hafner et al., ICLR 2020

More on this in a few weeks!



Variational autoencoders in robotics
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Transfer learning from synthetic to real images using 
variational autoencoders for precise position detection
Inoue et al., ICIP 2018

More on this in a few weeks!

Decision



Today

• Basics of computer vision for robotics

• Representation learning
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Next time…

• Presentations on representation learning

• Reinforcement learning
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